Meteor Activity Outlook for 12-18 July 2025

- 0 Comment - In: ,

Kevin Freitas captured this impressive fireball through clouds on April 11, 2025, at 00:51 PDT (7:51 UT) from Seattle, Washington, USA. ©Kevin Freitas

During this period, the moon reaches its last quarter phase on Friday July 18th. At that time the moon will be located 90 degrees west of the sun and will rise near midnight local daylight-saving time (LDST). This weekend the waning gibbous moon will rise during the evening hours and will spoil the night sky with intense moonlight the remainder of the night. This will be the worst week of the month to try and view meteor activity. One may try to view during the evening hours prior to moon rise, but meteor activity at this time of night in generally low. The estimated total hourly rates for evening observers this weekend should be near 2 as seen from mid-northern latitudes (45N) and 2 as seen from tropical southern locations (25S). For morning observers, the estimated total hourly rates should be near 5 as seen from mid-northern latitudes (45N) and 6 as seen from tropical southern locations (25S). The actual rates seen will also depend on factors such as personal light and motion perception, local weather conditions, alertness, and experience in watching meteor activity. Rates during this period are reduced due to moonlight. Note that the hourly rates listed below are estimates as viewed from dark sky sites away from urban light sources. Observers viewing from urban areas will see less activity as only the brighter meteors will be visible from such locations.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning July 12/13. These positions do not change greatly day to day so the listed positions may be used during this entire period. Most star atlases (available online and at bookstores and planetariums) will provide maps with grid lines of the celestial coordinates so that you may find out exactly where these positions are located in the sky. I have also included charts of the sky that display the radiant positions for evening, midnight, and morning. The center of each chart is the sky directly overhead at the appropriate hour. These charts are oriented for facing south but can be used for any direction by rotating the charts to the desired direction. A planisphere or computer planetarium program is also useful in showing the sky at any time of night on any date of the year. Activity from each radiant is best seen when it is positioned highest in the sky (culmination), either due north or south along the meridian, depending on your latitude. Radiants that rise after midnight will not reach their highest point in the sky until daylight. For these radiants, it is best to view them during the last few hours before dawn. It must be remembered that meteor activity is rarely seen at its radiant position. Rather they shoot outwards from the radiant, so it is best to center your field of view so that the radiant lies toward the edge and not the center. Viewing there will allow you to easily trace the path of each meteor back to the radiant (if it is a shower member) or in another direction if it is sporadic. Meteor activity is not seen from radiants that are located far below the horizon. The positions below are listed in a west to east manner in order of right ascension (celestial longitude). The positions listed first are located further west therefore are accessible earlier in the night while those listed further down the list rise later in the night.

Radiant Positions at 23:00 LDST

Radiant Positions at 22:00 Local Daylight-Saving Time

Radiant Positions at 01:00 LDST

Radiant Positions at 01:00 Local Daylight-Saving Time

Radiant Positions at 04:00 LDST

Radiant Positions at 04:00 Local Daylight-Saving Time

 

These sources of meteoric activity are expected to be active this week

Details on the active showers will continue next week when viewing conditions are more favorable

The list below offers information in tabular form of the active showers that I feel are within reach of the visual observer to discern. Hourly rates are often less than one, so these sources are rarely listed as visual targets in most meteor shower lists. If you are like me and wish to associate as many meteors as possible with known sources, then you will appreciate these listings. Before claiming to have seen meteors from these class IV showers, you should attempt to determine if these meteors actually belong to them and are not chance alignments of sporadic meteors. You can note parameters such as duration, length, radiant distance and the elevation of each meteor to help compute the probability of shower association.  It should be remembered that slow meteors can be seen from fast showers, but fast meteors cannot be produced from slow showers. Slower showers are those with velocities less than 35/km per second. Slow meteors can appear from fast showers when they appear close to the radiant or low in the sky. The table located on page 22 of the IMO’s 2025 Meteor Shower Calendar is a big help in aiding in the identification of meteors. If you record the length and duration of each meteor, you can use this chart to check the probability of the meteor belonging to a shower of known velocity. If the angular velocity is similar to the figure in the table, then your meteor probably belongs to that shower. Recognizing meteors from obscure showers is certainly not for the beginning meteor observer as it takes many hours to get a feel of what you are seeing. It is our hope that you will advance beyond watching meteors as a fireworks display and will want to help us expand our knowledge of the heavenly bodies we encounter in the skies above by classifying each meteor you see. Rates and positions in the table are exact for Saturday night/Sunday morning.

 

SHOWER DATE OF MAXIMUM ACTIVITY CELESTIAL POSITION ENTRY VELOCITY CULMINATION HOURLY RATE CLASS
RA (RA in Deg.) DEC Km/Sec Local Daylight-Saving Time North-South
alpha Capricornids (CAP) Jul 30 19:48 (297)  -13 25 02:00 <1 – <1 II
Anthelion (ANT) 20:12 (303)  -20 30 02:00 <1 – 1 II
Northern June Aquilids (NZC) Jul 03 21:11 (318)  -03 38 03:00 <1 – <1 IV
Microscopiids (MIC) Jul 03 21:41 (325)  -26 39 03:00 <1 – <1 IV
July Pegasids (JPG) Jul 12 23:20 (350) +12 64 05:00 <1 – <1 II
zeta Cassiopeiids (ZCS) Jul 16 00:15 (004) +50 56 06:00 <1 – <1 IV
eta Eridanids (ERI) Aug 04 01:25 (021)  -22 64 07:00 <1 – <1 IV
phi Piscids (PPS) Jun 30 01:32 (023) +28 67 07:00 <1 – <1 IV
c-Andromedids (CAN) Jul 07 02:15 (034) +49 57 08:00 <1 – <1 IV
July chi Arietids (JXA) Jul 17 02:18 (035) +09 69 08:00 <1 – <1 IV

You can keep track of the activity of these meteor showers as well as those beyond the limits of visual observing by visiting the NASA Meteor Shower Portal. You can move the sky globe to see different areas of the sky. Colored dots indicate shower meteors while white dots indicate sporadic (random) activity. The large orange disk indicates the position of the sun so little activity will be seen in that area of the sky.

Class Explanation: A scale to group meteor showers by their intensity:

  • Class I: the strongest annual showers with Zenith Hourly Rates normally ten or better.
  • Class II: reliable minor showers with ZHR’s normally two to ten.
  • Class III: showers that do not provide annual activity. These showers are rarely active yet have the potential to produce a major display on occasion.
  • Class IV: weak minor showers with ZHR’s rarely exceeding two. The study of these showers is best left to experienced observers who use plotting and angular velocity estimates to determine shower association. These weak showers are also good targets for video and photographic work. Observers with less experience are urged to limit their shower associations to showers with a rating of I to III.

Tags:

Leave a Reply

Your email address will not be published. Required fields are marked *